Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Toxins (Basel) ; 15(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37235345

RESUMO

Aflatoxins (AFs) are toxic secondary metabolites produced by Aspergillus spp. and are found in food and feed as contaminants worldwide. Due to climate change, AFs occurrence is expected to increase also in western Europe. Therefore, to ensure food and feed safety, it is mandatory to develop green technologies for AFs reduction in contaminated matrices. With this regard, enzymatic degradation is an effective and environmentally friendly approach under mild operational conditions and with minor impact on the food and feed matrix. In this work, Ery4 laccase, acetosyringone, ascorbic acid, and dehydroascorbic acid were investigated in vitro, then applied in artificially contaminated corn for AFB1 reduction. AFB1 (0.1 µg/mL) was completely removed in vitro and reduced by 26% in corn. Several degradation products were detected in vitro by UHPLC-HRMS and likely corresponded to AFQ1, epi-AFQ1, AFB1-diol, or AFB1dialehyde, AFB2a, and AFM1. Protein content was not altered by the enzymatic treatment, while slightly higher levels of lipid peroxidation and H2O2 were detected. Although further studies are needed to improve AFB1 reduction and reduce the impact of this treatment in corn, the results of this study are promising and suggest that Ery4 laccase can be effectively applied for the reduction in AFB1 in corn.


Assuntos
Aflatoxina B1 , Aflatoxinas , Aflatoxina B1/metabolismo , Zea mays/metabolismo , Peróxido de Hidrogênio , Lacase , Aflatoxinas/metabolismo
2.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677580

RESUMO

GLUT1 is a facilitative glucose transporter that can transport oxidized vitamin C (i.e., dehydroascorbic acid) and complements the action of reduced vitamin C transporters. To identify the residues involved in human GLUT1's transport of dehydroascorbic acid, we performed docking studies in the 5 Å grid of the glucose-binding cavity of GLUT1. The interactions of the bicyclic hemiacetal form of dehydroascorbic acid with GLUT1 through hydrogen bonds with the -OH group of C3 and C5 were less favorable than the interactions with the sugars transported by GLUT1. The eight most relevant residues in such interactions (i.e., F26, Q161, I164, Q282, Y292, and W412) were mutated to alanine to perform functional studies for dehydroascorbic acid and the glucose analog, 2-deoxiglucose, in Xenopus laevis oocytes. All the mutants decreased the uptake of both substrates to less than 50%. The partial effect of the N317A mutant in transporting dehydroascorbic acid was associated with a 30% decrease in the Vmax compared to the wildtype GLUT1. The results show that both substrates share the eight residues studied in GLUT1, albeit with a differential contribution of N317. Our work, combining docking with functional studies, marks the first to identify structural determinants of oxidized vitamin C's transport via GLUT1.


Assuntos
Ácido Desidroascórbico , Transportador de Glucose Tipo 1 , Humanos , Ácido Ascórbico , Transporte Biológico , Ácido Desidroascórbico/metabolismo , Glucose , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/genética
3.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677868

RESUMO

The objective of the study was to develop a new method for the determination of the total content of vitamin C and dehydroascorbic acid in food, based on the technique of differential pulse voltammetry with the use of a boron-doped diamond electrode modified with mercury film. A comparison was made between the results obtained with the developed method and a proposed reference method based on high-performance liquid chromatography with spectrophotometric detection. The reduction of dehydroascorbic acid was performed with the use of tris(2-carboxyethyl)phosphine. The interference caused by the presence of tris(2-carboxyethyl)phosphine during the voltammetric determination of ascorbic acid was effectively eliminated through a reaction with N-ethylmaleimide. The conducted validation of the voltammetric method indicated that correct results of analysis of the total content of vitamin C and ascorbic acid were obtained. Analysis of the content of dehydroascorbic acid was imprecise due to the application of the differential method. The results of the analyses and the determined validation parameters of the developed method are characterised by a high degree of conformance with the results obtained with the chromatographic reference method, which indicates the equivalence of the two methods.


Assuntos
Ácido Ascórbico , Ácido Desidroascórbico , Ácido Ascórbico/química , Indicadores e Reagentes , Vitaminas/análise , Cromatografia Líquida de Alta Pressão/métodos
4.
Food Chem ; 399: 133933, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037684

RESUMO

A series of incubation systems of (+) - catechin (Cat), ascorbic acid (AA) and polyphenol oxidase (PPO) of lotus rhizome at 40 °C were performed to investigate the effect and oxidation pathway of AA on the stability of Cat. The results showed that after the enzymatic or non-enzymatic oxidation of Cat, the products of the two reactions were the same, namely epicatechin, catechin dimer and dehydrogenated catechin dimer. After adding AA, the protective effect of AA on catechin increased first and then decreased with the increase of AA concentration. 0.1 mmolL(exp)-1 AA can inhibit PPO activity in a short time. Within 24 h, 1 mmolL(exp)-1 AA can keep Cat content at 87.88 %. At the concentration of 10 mmolL(exp)-1 AA, excessive AA is oxidized to form a large amount of dehydroascorbic acid (DHAA), which forms an adduct with Cat, promoting the consumption of Cat. The effect of AA on the stability of Cat is time-dependent and dose-dependent.


Assuntos
Ácido Ascórbico , Catequina , Ácido Ascórbico/metabolismo , Catecol Oxidase/metabolismo , Ácido Desidroascórbico , Oxirredução
5.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500319

RESUMO

Fruits and vegetables are a source of a wide range of nutrients, including bioactive compounds. These compounds have great biological activity and have been linked to the prevention of chronic non-communicable diseases. Currently, the food industry is developing new products to introduce these compounds, whereby smoothies are becoming more popular among consumers. The aim of this study was to evaluate the nutritional quality and the polyphenol and vitamin C content of smoothies available on the Spanish market. An evaluation of the nutritional information and ingredients was carried out. The phenolic compounds were determined by HPLC-ESI-TOF-MS; the vitamin C content was quantified using HPLC-UV/VIS; and the antioxidant activity was analyzed by DPPH and FRAP. Among all of the ingredients of the smoothies, coconut and banana have shown a negative impact on the polyphenol content of the smoothies. In contrast, ingredients such as orange, mango, and passion fruit had a positive correlation with the vitamin C content. Moreover, apple and red fruits showed the highest positive correlations with most of the phenolic acids, flavonoids, total phenolic compounds, and antioxidant activities. In addition, a clustering analysis was performed, and four groups were clearly defined according to the bioactive composition determined here. This research is a precious step for the formulation of new smoothies and to increase their polyphenol quality.


Assuntos
Ácido Ascórbico , Fenóis , Ácido Ascórbico/análise , Fenóis/análise , Antioxidantes/análise , Polifenóis/análise , Frutas/química , Vitaminas/análise , Valor Nutritivo
6.
J Exp Bot ; 73(22): 7564-7581, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36124630

RESUMO

Induced resistance (IR), a phenotypic state induced by an exogenous stimulus and characterized by enhanced resistance to future (a)biotic challenge, is an important component of plant immunity. Numerous IR-inducing stimuli have been described in various plant species, but relatively little is known about 'core' systemic responses shared by these distinct IR stimuli and the effects of IR on plant-associated microbiota. In this study, rice (Oryza sativa) leaves were treated with four distinct IR stimuli (ß-aminobutyric acid, acibenzolar-S-methyl, dehydroascorbic acid, and piperonylic acid) capable of inducing systemic IR against the root-knot nematode Meloidogyne graminicola and evaluated their effect on the root transcriptome and exudome, and root-associated nematode communities. Our results reveal shared transcriptional responses-notably induction of jasmonic acid and phenylpropanoid metabolism-and shared alterations to the exudome that include increased amino acid, benzoate, and fatty acid exudation. In rice plants grown in soil from a rice field, IR stimuli significantly affected the composition of rhizosphere nematode communities 3 d after treatment, but by 14 d after treatment these changes had largely reverted. Notably, IR stimuli did not reduce nematode diversity, which suggests that IR might offer a sustainable option for managing plant-parasitic nematodes.


Assuntos
Oryza , Oryza/genética
7.
Antioxid Redox Signal ; 37(7-9): 538-559, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35166128

RESUMO

Aims: Glioblastoma (GB) is one of the most aggressive brain tumors. These tumors modify their metabolism, increasing the expression of glucose transporters, GLUTs, which incorporate glucose and the oxidized form of vitamin C, dehydroascorbic acid (DHA). We hypothesized that GB cells preferentially take up DHA, which is intracellularly reduced and compartmentalized into the endoplasmic reticulum (ER), promoting collagen biosynthesis and an aggressive phenotype. Results: Our results showed that GB cells take up DHA using GLUT1, while GLUT3 and sodium-dependent vitamin C transporter 2 (SVCT2) are preferably intracellular. Using a baculoviral system and reticulum-enriched extracts, we determined that SVCT2 is mainly located in the ER and corresponds to a short isoform. Ascorbic acid (AA) was compartmentalized, stimulating collagen IV secretion and increasing in vitro and in situ cell migration. Finally, orthotopic xenografts induced in immunocompetent guinea pigs showed that vitamin C deficiency retained collagen, reduced blood vessel invasion, and affected glomeruloid vasculature formation, all pathological conditions associated with malignancy. Innovation and Conclusion: We propose a functional role for vitamin C in GB development and progression. Vitamin C is incorporated into the ER of GB cells, where it favors the synthesis of collagen, thus impacting tumor development. Collagen secreted by tumor cells favors the formation of the glomeruloid vasculature and enhances perivascular invasion. Antioxid. Redox Signal. 37, 538-559.


Assuntos
Ácido Ascórbico , Glioblastoma , Animais , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Colágeno/metabolismo , Ácido Desidroascórbico/metabolismo , Ácido Desidroascórbico/farmacologia , Glucose/metabolismo , Cobaias , Humanos , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Vitaminas
8.
Front Plant Sci ; 13: 1049785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714702

RESUMO

Pepper is one of the most vitamin C enriched vegetables worldwide. Although applying nitrogen (N) fertilizer is an important practice for high fruit yield in pepper production, it is still unclear how N application regulates pepper fruit vitamin C anabolism at different maturity stage. To further the understanding, we combined physiological and metabolomic analysis to investigate the fruit vitamin C content (including ascorbic acid (AsA) and dehydroascorbic acid (DHA)), related enzyme activity and non-targeted metabolites of field-grown chili pepper produced under different N levels at mature green and red stages. The results showed that increasing N application reduced AsA content in pepper fruit at both maturity stages, but highly elevated DHA content only at mature green stage. Regardless of N application level, AsA content displayed an increasing trend while DHA content was reduced as pepper fruit maturity advanced, resulting in a higher content of total vitamin C at the mature green stage. The L-galactose pathway, D-galacturonate pathway, and myo-inositol pathway were identified for AsA biosynthesis. The involved precursor metabolites were mainly negatively regulated by increasing N application, and their accumulation increased when pepper fruit developed from green to red stage. Meanwhile, the activities of key enzymes and metabolites in relation to degradation and recycling processes of AsA and DHA were increased or did not change with increasing N application, and they were differently influenced as fruit maturing. As a result, the recommended N application level (250 kg N ha-1) could maintain relatively high total vitamin C content in pepper fruits without yield loss at both maturity stages. These findings highlight the importance of optimizing N application level to maximize vitamin C content in pepper fruits, and provide a better understanding of the maturity stage-dependent N regulation on vitamin C anabolism.

9.
FEBS Lett ; 596(1): 53-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845720

RESUMO

Monocopper lytic polysaccharide monooxygenases (LPMOs) catalyse oxidative cleavage of glycosidic bonds in a reductant-dependent reaction. Recent studies indicate that LPMOs, rather than being O2 -dependent monooxygenases, are H2 O2 -dependent peroxygenases. Here, we describe SscLPMO10B, a novel LPMO from the phytopathogenic bacterium Streptomyces scabies and address links between this enzyme's catalytic rate and in situ hydrogen peroxide production in the presence of ascorbic acid, gallic acid and l-cysteine. Studies of Avicel degradation showed a clear correlation between the catalytic rate of SscLPMO10B and the rate of H2 O2 generation in the reaction mixture. We also assessed the impact of oxidised ascorbic acid, dehydroascorbic acid (DHA), on LPMO activity, since DHA, which is not considered a reductant, was recently reported to drive LPMO reactions. Kinetic studies, combined with NMR analysis, showed that DHA is unstable and converts into multiple derivatives, some of which are redox active and can fuel the LPMO reaction by reducing the active site copper and promoting H2 O2 production. These results show that the apparent monooxygenase activity observed in SscLPMO10B reactions without exogenously added H2 O2 reflects a peroxygenase reaction.


Assuntos
Ácido Desidroascórbico
10.
Rocz Panstw Zakl Hig ; 72(4): 373-379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34928113

RESUMO

BACKGROUND: Vitamin C is one of the most important water-soluble vitamins. It is responsible for many important functions in the body, including: it has a positive effect on maintaining immunity, protects the body against free radicals, and also participates in the synthesis of hormones. Juices can be a good source of this vitamin. Most of the juices available on the market are processed products. Untreated juices, which do not contain added preservatives, sugar and are not pasteurized, constitute a smaller group on the market. Therefore, this group of juices can be a valuable product in human nutrition. OBJECTIVE: The aim of the study was t o analyze the content of ascorbic acid (AA), dehydroascorbic acid (DHAA) and vitamin C (TAA) in non-preserved juices, depending on their type and storage time. MATERIAL AND METHODS: The analysis of T AA, AA and DHAA content in juices was carried out in ten types of nonpreserved juices from two companies (A and B), purchased in a chain of retail outlets. The analyzed juices in company A were: sauerkraut and carrot, grapefruit, orange, apple and mandarin, while in company B: orange, apple, apple and quince, grapefruit and mandarin. In test 1, the first ten juices were analyzed, in test 2 - another ten juices after one month, in test 3 - juices from test 2 were used, and three days after opening the package and storing the juices in standard refrigeration conditions, the stability test of AA was analyzed. The AA and TAA contents were determined using the high performance liquid chromatography (HPLC) method. The DHAA content was calculated by subtracting the AA content from the TAA content. RESULTS: The highest TAA content was found in citrus juices, i.e. grapefruit, orange and mandarin, and the lowest in sauerkraut and carrot juices and apple juice. Moreover, ascorbic acid in apple juice was characterized by the lowest durability. CONCLUSIONS: In the production of non-preserved apple juice, consideration should be given to the natural protection of ascorbic acid by the addition of citrus or other fruit juice, vegetable juice or by using a mild technology in the production process.


Assuntos
Ácido Ascórbico , Citrus , Frutas , Humanos , Vitaminas
11.
Front Physiol ; 12: 767439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938201

RESUMO

Ascorbic acid (AA; or vitamin C) is an important physiological antioxidant and radical scavenger. Some mammalian species, including homo sapiens, have lost the ability to synthetize AA and depend on its nutritional uptake. Erythrocytes from AA-auxotroph mammals express high amounts of the glucose transporter GLUT1. This isoform enables rapid uptake of glucose as well as dehydroascorbate (DHA), the fully oxidized form of AA. Here, we explored the effects of DHA uptake on the redox metabolism of human erythrocytes. DHA uptake enhanced plasma membrane electron transport (PMET) activity. This process is mediated by DCytb, a membrane bound cytochrome catalyzing extracellular reduction of Fe3+ and ascorbate free radical (AFR), the first oxidized form of AA. DHA uptake also decreased cellular radical oxygen species (ROS) levels. Both effects were massively enhanced in the presence of physiological glucose concentrations. Reduction of DHA to AA largely depleted intracellular glutathione (GSH) and induced the efflux of its oxidized form, GSSG. GSSG efflux could be inhibited by MK-571 (IC 50 = 5 µM), indicating involvement of multidrug resistance associated protein (MRP1/4). DHA-dependent GSH depletion and GSSG efflux were completely rescued in the presence of 5 mM glucose and, partially, by 2-deoxy-glucose (2-DG), respectively. These findings indicate that human erythrocytes are physiologically adapted to recycle AA both intracellularly via GLUT1-mediated DHA uptake and reduction and extracellularly via DCytb-mediated AFR reduction. We discuss the possibility that this improved erythrocyte-mediated AA recycling was a prerequisite for the emergence of AA auxotrophy which independently occurred at least twice during mammalian evolution.

12.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684843

RESUMO

The analysis of total vitamin C content in food is most frequently performed by reducing dehydroascorbic acid to ascorbic acid, which is then assayed with the technique of high-performance liquid chromatography combined with spectrophotometric detection. Tris(2-carboxyethyl)phosphine is currently the only agent in use that efficiently reduces dehydroascorbic acid at pH < 2. Therefore, there is a continued need to search for new reducing agents that will display a high reactivity and stability in acidic solutions. The objective of the study was to verify the applicability of unithiol and tris(hydroxypropyl)phosphine for a reducing dehydroascorbic acid in an extraction medium with pH < 2. The conducted validation of the newly developed method of determining the total content of vitamin C using tris(hydroxypropyl)phosphine indicates its applicability for food analysis. The method allows obtaining equivalent results compared to the method based on the use of tris(2-carboxyethyl)phosphine. The low efficiency of dehydroascorbic acid reduction with the use of unithiol does not allow its application as a new reducing agent in vitamin C analysis.


Assuntos
Ácido Ascórbico/química , Ácido Desidroascórbico/química , Substâncias Redutoras/química , Cromatografia Líquida de Alta Pressão/métodos , Alimentos , Análise de Alimentos/métodos , Indicadores e Reagentes/química , Fosfinas/química
13.
Life (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685394

RESUMO

Ascorbate functions as an electron donor and scavenges free radicals. Dehydroascorbic acid (DHA), the oxidized form of ascorbate, is generated as a result of these reactions. While low plasma ascorbate levels have been reported in hemodialysis patients worldwide, no studies have measured DHA because it is not generalized. In this study, we aimed to clarify whether plasma ascorbate levels are low in dialysis patients and whether plasma ascorbate levels fluctuate before and after dialysis. Moreover, we applied our previously established method to measure the plasma ascorbate and DHA levels in chronic kidney disease (CKD) stage G3-G5 non-hemodialysis-dependent patients, and pre- and post-dialysis plasma ascorbate and DHA levels in CKD stage G5D hemodialysis patients. The sample size was calculated using G-power software. The pre-dialysis plasma total ascorbate levels, including DHA, were significantly (56%) lower in hemodialysis patients than in non-hemodialysis-dependent CKD patients. After dialysis, there was a 40% reduction in the plasma total ascorbate levels. Hemodialysis increased the post-dialysis plasma proportions of DHA from 37% to 55%. The study results demonstrated lower plasma total ascorbate levels in hemodialysis patients compared with in non-hemodialysis-dependent CKD patients; these low levels in hemodialysis patients were further reduced by hemodialysis and increased DHA proportion.

14.
Antioxidants (Basel) ; 10(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34679743

RESUMO

Vitamin C (ascorbate) plays an important role in neutrophil function and is accumulated by the cells either directly via vitamin C transporters (SVCT) or indirectly following oxidation to dehydroascorbic acid. Septic patients are known to have significantly depleted plasma ascorbate status, but little is known about the ascorbate content of their circulating cells. Therefore, we assessed the ascorbate concentrations of plasma, leukocytes and erythrocytes from septic patients and compared these to healthy controls. Non-fasting blood samples were collected from healthy volunteers (n = 20) and critically ill patients with sepsis (n = 18). The ascorbate content of the plasma and isolated neutrophils and erythrocytes was measured using HPLC and plasma myeloperoxidase concentrations were determined using ELISA. Ex vivo uptake of ascorbate and dehydroascorbic acid by neutrophils from septic patients was also assessed. Neutrophils isolated from septic patients had comparable intracellular ascorbate content to healthy volunteers (0.33 vs. 0.35 nmol/106 cells, p > 0.05), despite significantly lower plasma concentrations than the healthy controls (14 vs. 88 µmol/L, p < 0.001). In contrast, erythrocytes from septic patients had significantly lower intracellular ascorbate content than healthy controls (30 vs. 69 µmol/L, p = 0.002), although this was 2.2-fold higher than the matched plasma concentrations in the patients (p = 0.008). Higher concentrations of myeloperoxidase, a source of reactive oxygen species, were observed in the septic patients relative to healthy controls (194 vs. 14 mg/mL, p < 0.0001). In contrast to neutrophils from healthy volunteers, the neutrophils from septic patients demonstrated elevated uptake of extracellular ascorbate. Overall, neutrophils from septic patients exhibited comparable intracellular ascorbate content to those from healthy controls, despite the patients presenting with hypovitaminosis C. The mechanisms involved are currently uncertain, but could include increased generation of dehydroascorbic acid in septic patients, enhanced basal activation of their neutrophils or upregulation of their vitamin C transporters.

15.
Antioxidants (Basel) ; 10(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34573045

RESUMO

During brain development, sodium-vitamin C transporter (SVCT2) has been detected primarily in radial glial cells in situ, with low-to-absent expression in cerebral cortex neuroblasts. However, strong SVCT2 expression is observed during the first postnatal days, resulting in increased intracellular concentration of vitamin C. Hippocampal neurons isolated from SVCT2 knockout mice showed shorter neurites and low clustering of glutamate receptors. Other studies have shown that vitamin C-deprived guinea pigs have reduced spatial memory, suggesting that ascorbic acid (AA) and SVCT2 have important roles in postnatal neuronal differentiation and neurite formation. In this study, SVCT2 lentiviral overexpression induced branching and increased synaptic proteins expression in primary cultures of cortical neurons. Analysis in neuroblastoma 2a (Neuro2a) and human subventricular tumor C3 (HSVT-C3) cells showed similar branching results. SVCT2 was mainly observed in the cell membrane and endoplasmic reticulum; however, it was not detected in the mitochondria. Cellular branching in neuronal cells and in a previously standardized neurosphere assay is dependent on the recycling of vitamin C or reduction in dehydroascorbic acid (DHA, produced by neurons) by glial cells. The effect of WZB117, a selective glucose/DHA transporter 1 (GLUT1) inhibitor expressed in glial cells, was also studied. By inhibiting GLUT1 glial cells, a loss of branching is observed in vitro, which is reproduced in the cerebral cortex in situ. We concluded that vitamin C recycling between neurons and astrocyte-like cells is fundamental to maintain neuronal differentiation in vitro and in vivo. The recycling activity begins at the cerebral postnatal cortex when neurons increase SVCT2 expression and concomitantly, GLUT1 is expressed in glial cells.

16.
Food Chem ; 359: 129864, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33962194

RESUMO

Lettuce is the most consumed leafy vegetable though the most popular varieties have a low nutritional value. Our objective was to accurately quantify vitamin C and anthocyanins in wild relatives, and commercial and traditional varieties. Wild species and traditional varieties contained more total ascorbic acid (TAA) than commercial varieties (21% and 8%, respectively). In contrast, commercial varieties had significantly higher content of anthocyanins than traditional varieties and wild species (6 and 8 times more, respectively). TAA was significantly higher in green than in red lettuces (18%). TAA was also significantly higher in the leaves of two wild species than in stems. Cyanidin 3-O-(6'-O-malonylglucoside) was the most abundant anthocyanin (97%), present in most samples. The rankings of accessions by vitamin C and anthocyanin contents can be useful for consumers worried about the impacts of food on their wellbeing and for breeders aiming to improve lettuce by biofortification with health-promoting compounds.


Assuntos
Antocianinas/análise , Ácido Ascórbico/análise , Valor Nutritivo , Folhas de Planta/química
17.
Comput Struct Biotechnol J ; 19: 1863-1873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841749

RESUMO

Metabolic profiling in COVID-19 patients has been associated with disease severity, but there is no report on sex-specific metabolic changes in discharged survivors. Herein we used an integrated approach of LC-MS-and GC-MS-based untargeted metabolomics to analyze plasma metabolic characteristics in men and women with non-severe COVID-19 at both acute period and 30 days after discharge. The results demonstrate that metabolic alterations in plasma of COVID-19 patients during the recovery and rehabilitation process were presented in a sex specific manner. Overall, the levels of most metabolites were increased in COVID-19 patients after the cure relative to acute period. The major plasma metabolic changes were identified including fatty acids in men and glycerophosphocholines and carbohydrates in women. In addition, we found that women had shorter length of hospitalization than men and metabolic characteristics may contribute to predict the duration from positive to negative in non-severe COVID-19 patients. Collectively, this study shed light on sex-specific metabolic shifts in non-severe COVID-19 patients during the recovery process, suggesting a sex bias in prognostic and therapeutic evaluations based on metabolic profiling.

18.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915907

RESUMO

Ascorbic acid (AA) has antioxidant properties. However, in the presence of Fe2+/Fe3+ ions and H2O2, it may behave as a pro-oxidant by accelerating and enhancing the formation of hydroxyl radicals (•OH). Therefore, in this study we evaluated the effect of AA at concentrations of 1 to 200 µmol/L on •OH-induced light emission (at a pH of 7.4 and temperature of 37 °C) from 92.6 µmol/L Fe2+-185.2 µmol/L EGTA (ethylene glycol-bis (ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid)-2.6 mmol/L H2O2, and 92.6 µmol/L Fe3+-185.2 µmol/L EGTA-2.6 mmol/L H2O2 systems. Dehydroascorbic acid (DHAA) at the same range of concentrations served as the reference compound. Light emission was measured with multitube luminometer (AutoLumat Plus LB 953) for 120 s after automatic injection of H2O2. AA at concentrations of 1 to 50 µmol/L and of 1 to 75 µmol/L completely inhibited light emission from Fe2+-EGTA-H2O2 and Fe3+-EGTA-H2O2, respectively. Concentrations of 100 and 200 µmol/L did not affect chemiluminescence of Fe3+-EGTA-H2O2 but tended to increase light emission from Fe2+-EGTA-H2O2. DHAA at concentrations of 1 to 100 µmol/L had no effect on chemiluminescence of both systems. These results indicate that AA at physiological concentrations exhibits strong antioxidant activity in the presence of chelated iron and H2O2.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Ácido Egtázico/química , Compostos Férricos/química , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Radical Hidroxila/efeitos adversos , Radical Hidroxila/antagonistas & inibidores , Radical Hidroxila/química , Luminescência , Medições Luminescentes
19.
Trends Endocrinol Metab ; 32(4): 198-211, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33518451

RESUMO

Cancer cells increase their metabolic activity by enhancing glucose uptake through overexpression of hexose transporters (Gluts). Gluts also have the capacity to transport other molecules besides glucose, including fructose, mannose, and dehydroascorbic acid (DHA), the oxidized form of vitamin C. The majority of research studies in this field have focused on the role of glucose transport and metabolism in cancer, leaving a substantial gap in our knowledge of the contribution of other hexoses and DHA in cancer biology. Here, we summarize the most recent advances in understanding the role that the multifunctional transport capacity of Gluts plays in biological and clinical aspects of cancer, and how these characteristics can be exploited in the search for novel diagnostic and therapeutic strategies.


Assuntos
Proteínas de Transporte de Monossacarídeos , Neoplasias , Ácido Ascórbico , Transporte Biológico , Ácido Desidroascórbico , Glucose/metabolismo , Hexoses/metabolismo , Humanos , Proteínas de Transporte de Monossacarídeos/metabolismo , Neoplasias/diagnóstico , Neoplasias/terapia
20.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287160

RESUMO

Ascorbic acid (AA) is one of the essential nutrients in bee pollen, however, it is unstable and likely to be oxidized. Generally, the oxidation form (dehydroascorbic acid (DHA)) is considered to have equivalent biological activity as the reduction form. Thus, determination of the total content of AA and DHA would be more accurate for the nutritional analysis of bee pollen. Here we present a simple, sensitive, and reliable method for the determination of AA, total ascorbic acids (TAA), and DHA in rape (Brassica campestris), lotus (Nelumbo nucifera), and camellia (Camellia japonica) bee pollen, which is based on ultrasonic extraction in metaphosphoric acid solution, and analysis using hydrophilic interaction liquid chromatography (HILIC)-ultraviolet detection. Analytical performance of the method was evaluated and validated, then the proposed method was successfully applied in twenty-one bee pollen samples. Results indicated that contents of AA were in the range of 17.54 to 94.01 µg/g, 66.01 to 111.66 µg/g, and 90.04 to 313.02 µg/g for rape, lotus, and camellia bee pollen, respectively. In addition, percentages of DHA in TAA showed good intra-species consistency, with values of 13.7%, 16.5%, and 7.6% in rape, lotus, and camellia bee pollen, respectively. This is the first report on the discriminative determination between AA and DHA in bee pollen matrices. The proposed method would be valuable for the nutritional analysis of bee pollen.


Assuntos
Ácido Ascórbico/química , Abelhas/química , Ácido Desidroascórbico/química , Pólen/química , Animais , Brassica/química , Camellia/química , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e Hidrofílicas , Lotus/química , Ácidos Fosforosos/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...